814 research outputs found

    Next-to-leading order QCD corrections to single-inclusive hadron production in transversely polarized p-p and pbar-p collisions

    Full text link
    We present a calculation of the next-to-leading order QCD corrections to the partonic cross sections contributing to single-inclusive high-p_T hadron production in collisions of transversely polarized hadrons. We use a recently developed projection technique for treating the phase space integrals in the presence of the cos(2Phi) azimuthal-angular dependence associated with transverse polarization. Our phenomenological results show that the double-spin asymmetry A_TT^pi for neutral-pion production is expected to be very small for polarized pp scattering at RHIC and could be much larger for the proposed experiments with an asymmetric pbar-p collider at the GSIComment: 7 pages, 5 figure

    Coinduction up to in a fibrational setting

    Get PDF
    Bisimulation up-to enhances the coinductive proof method for bisimilarity, providing efficient proof techniques for checking properties of different kinds of systems. We prove the soundness of such techniques in a fibrational setting, building on the seminal work of Hermida and Jacobs. This allows us to systematically obtain up-to techniques not only for bisimilarity but for a large class of coinductive predicates modelled as coalgebras. By tuning the parameters of our framework, we obtain novel techniques for unary predicates and nominal automata, a variant of the GSOS rule format for similarity, and a new categorical treatment of weak bisimilarity

    Esperienze di didattica della fisica in diversi livelli del sistema educativo

    Full text link
    The growing interest of people in science events, the projects supported by the Italian Ministry of Education, University and Research to foster STEM teaching in different levels of the education system and the introduction of modern physics in some Italian high schools, contributed to the strengthening of interaction between schools, universities and research centers. This interaction realized in dedicated activities characterized by innovative communication and education strategies.This paper presents the events of science dissemination organized in the last years by the University of Ferrara and the National Institute for Nuclear Physics taking into account some case study differentiated by contents, recipients and education strategies.Comment: The article is written in Italia

    The involutions-as-principal types/ application-as-unification analogy

    Get PDF
    In 2005, S. Abramsky introduced various universal models of computation based on Affine Combinatory Logic, consisting of partial involutions over a suitable formal language of moves, in order to discuss reversible computation in a game-theoretic setting. We investigate Abramsky\u2019s models from the point of view of the model theory of \u3bb-calculus, focusing on the purely linear and affine fragments of Abramsky\u2019s Combinatory Algebras. Our approach stems from realizing a structural analogy, which had not been hitherto pointed out in the literature, between the partial involution interpreting a combinator and the principal type of that term, with respect to a simple types discipline for \u3bb-calculus. This analogy allows for explaining as unification between principal types the somewhat awkward linear application of involutions arising from Geometry of Interaction (GoI). Our approach provides immediately an answer to the open problem, raised by Abramsky, of characterising those finitely describable partial involutions which are denotations of combinators, in the purely affine fragment. We prove also that the (purely) linear combinatory algebra of partial involutions is a (purely) linear \u3bb-algebra, albeit not a combinatory model, while the (purely) affine combinatory algebra is not. In order to check the complex equations involved in the definition of affine \u3bb-algebra, we implement in Erlang the compilation of \u3bb-terms as involutions, and their execution

    The OLYMPUS Internal Hydrogen Target

    Get PDF
    An internal hydrogen target system was developed for the OLYMPUS experiment at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled, tubular cell within an aluminum scattering chamber. Hydrogen entered at the center of the cell and exited through the ends, where it was removed from the beamline by a multistage pumping system. A cryogenic coldhead cooled the target cell to counteract heating from the beam and increase the density of hydrogen in the target. A fixed collimator protected the cell from synchrotron radiation and the beam halo. A series of wakefield suppressors reduced heating from beam wakefields. The target system was installed within the DORIS storage ring and was successfully operated during the course of the OLYMPUS experiment in 2012. Information on the design, fabrication, and performance of the target system is reported.Comment: 9 pages, 13 figure

    A definitional implementation of the LAX logical framework LLFP in CoQ, for supporting fast and loose reasoning

    Get PDF
    The Lax Logical Framework, LLFP, was introduced, by a team including the last two authors, to provide a conceptual framework for integrating different proof development tools, thus allowing for external evidence and for postponing, delegating, or factoring-out side conditions. In particular, LLFP allows for reducing the number of times a proof-irrelevant check is performed. In this paper we give a shallow, actually definitional, implementation of LLFP in Coq, i.e. we use Coq both as host framework and oracle for LLFP. This illuminates the principles underpinning the mechanism of Lock-types and also suggests how to possibly extend Coq with the features of LLFP. The derived proof editor is then put to use for developing case-studies on an emerging paradigm, both at logical and implementation level, which we call fast and loose reasoning following Danielsson et alii [6]. This paradigm trades off efficiency for correctness and amounts to postponing, or running in parallel, tedious or computationally demanding checks, until we are really sure that the intended goal can be achieved. Typical examples are branch-prediction in CPUs and optimistic concurrency control

    LF+ in Coq for fast-and-loose reasoning

    Get PDF
    We develop the metatheory and the implementation, in Coq, of the novel logical framework LF+ and discuss several of its applications. LF+ generalises research work, carried out by the authors over more than a decade, on Logical Frameworks conservatively extending LF and featuring lock-type constructors L-P(N:sigma)[center dot]. Lock-types capture monadically the concept of inhabitability up-to. They were originally introduced for factoring-out, postponing, or delegating to external tools the verification of time-consuming judgments, which are morally proof-irrelevant, thus allowing for integrating different sources of epistemic evidence in a unique Logical Framework. Besides introducing LF+ and its "shallow" implementation in Coq, the main novelty of the paper is to show that lock-types are also a very flexible tool for expressing in Type Theory several diverse cognitive attitudes and mental strategies used in ordinary reasoning, which essentially amount to reasoning up-to, as in e.g. Typical Ambiguity provisos or co-inductive Coq proofs. In particular we address the encoding of the emerging paradigm of fast-and-loose reasoning, which trades off efficiency for correctness. This paradigm, implicitly used normally in naive Set Theory, is producing considerable impact also in computer architecture and distributed systems, when branch prediction and optimistic concurrency control are implemented

    A Method to Polarize Stored Antiprotons to a High Degree

    Get PDF
    Polarized antiprotons can be produced in a storage ring by spin--dependent interaction in a purely electron--polarized hydrogen gas target. The polarizing process is based on spin transfer from the polarized electrons of the target atoms to the orbiting antiprotons. After spin filtering for about two beam lifetimes at energies T40170T\approx 40-170 MeV using a dedicated large acceptance ring, the antiproton beam polarization would reach P=0.20.4P=0.2-0.4. Polarized antiprotons would open new and unique research opportunities for spin--physics experiments in pˉp\bar{p}p interactions

    Companions, codensity and causality

    Get PDF
    In the context of abstract coinduction in complete lattices, the notion of compatible function makes it possible to introduce enhancements of the coinduction proof principle. The largest compatible function, called the companion, subsumes most enhancements and has been proved to enjoy many good properties. Here we move to universal coalgebra, where the corresponding notion is that of a final distributive law. We show that when it exists the final distributive law is a monad, and that it coincides with the codensity monad of the final sequence of the given functor. On sets, we moreover characterise this codensity monad using a new abstract notion of causality. In particular, we recover the fact that on streams, the functions definable by a distributive law or GSOS specification are precisely the causal functions. Going back to enhancements of the coinductive proof principle, we finally obtain that any causal function gives rise to a valid up-to-context technique
    corecore